This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE
Transactions on Knowledge and Data Engineering

Position-Transitional Particle Swarm
Optimization-Incorporated Latent Factor Analysis

Xin Luo, Senior Member, IEEE, Ye Yuan, Sili Chen, Nianyin Zeng, Member, IEEE, and
Zidong Wang, Fellow, IEEE

Abstract—High-dimensional and sparse (HiDS) matrices are frequently found in various industrial applications. A latent factor analysis
(LFA) model is commonly adopted to extract useful knowledge from an HiDS matrix, whose parameter training mostly relies on a
stochastic gradient descent (SGD) algorithm. However, an SGD-based LFA model’s learning rate is hard to tune in real applications,
making it vital to implement its self-adaptation. To address this critical issue, this study firstly investigates the evolution process of a
particle swarm optimization algorithm with care, and then proposes to incorporate more dynamic information into it for avoiding
accuracy loss caused by premature convergence without extra computation burden, thereby innovatively achieving a novel
position-transitional particle swarm optimization (P?SO) algorithm. It is subsequently adopted to implement a P’SO-based LFA (PLFA)
model that builds a learning rate swarm applied to the same group of LFs. Thus, a PLFA model implements highly efficient learning rate
adaptation as well as represents an HiDS matrix precisely. Experimental results on four HiDS matrices emerging from real applications
demonstrate that compared with an SGD-based LFA model, a PLFA model no longer suffers from a tedious and expensive tuning
process of its learning rate, and it can achieve even higher prediction accuracy for missing data of an HiDS matrix. On the other hand,
compared with state-of-the-art adaptive LFA models, a PLFA model’s prediction accuracy and computational efficiency are highly
competitive. Hence, it has high potential in addressing real industrial issues.

Index Terms—Data Science, Computational Intelligence, Learning Rate Adaptation, Hyper Parameter Adaptation, Latent Factor

Analysis, Particle Swarm Optimization, High-dimensional and Sparse Data, Adaptive Algorithm, Industrial Application

1 INTRODUCTION

N MANY BIG-DATA-RELATED FIELDS like wireless

sensor networks [1-3], bioinformatic applications [4-6],

social networks [7-9] and electronic commerce systems
[10-12], people usually encounter a mass of entities and
their high-dimensional and sparse (HiDS) relationships
[10-12]. An HiDS matrix is commonly adopted to describe
such specific relationships among them [4-15], where only a
small fractions of its entries are given and the most others
are unknown.

Although an HiDS matrices is extremely sparse, it

<> This research is supported in part by the National Natural Science Foundation of
China under grants 61772493 and 61933007, in part by the Guangdong
Province Universities and College Pearl River Scholar Funded Scheme (2019),
and in part by the Natural Science Foundation of Chongqing (China) under
grant cstc2019jcyjjgX0013 (Corresponding authors: N. Zeng and Z. Wang).

< X. Luo is with the School of Computer Science and Technology, Dongguan
University of Technology, Dongguan, Guangdong 523808, China, and also with
the Hengrui (Chongqing) Artificial Intelligence Research Center, Department of
Big Data Analyses Techniques, Cloudwalk, Chongqing 401331, China (e-mail:
luoxin21@gmail.com).

< Ye Yuan and S. Chen are with the Chongqing Engineering Research Center of
Big Data Application for Smart Cities, and Chongqing Key Laboratory of Big
Data and Intelligent Computing, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Chongqing 400714, China (e-mail:
yeyuan@cigit.ac.cn, chensili06@outlook.com).

<N. Zeng is with the Department of Instrumental and Electrical Engineering,
Xiamen University, Xiamen 361005 China. (e-mail: zny@xmu.edu.cn).

<> Z. Wang is with the Department of Information Systems and Computing, Brunel
University, Uxbridge, Middlesex UBS8 3PH, U.K. (e-mail:

Zidong. Wang@brunel.ac.uk).

involves a mountain of valuable information regarding
various patterns. For instance, a user-item matrix generated
by an electronic commerce system describes user-item
preferences according to wusers’ historical experiences
[10-12]. In order to extract such knowledge from an HiDS
matrix, researchers have made great efforts to develop
various sophisticated models. Representative ones include a
probabilistic MF model [16], a multi-dimensional
probabilistic model [17], an SVD++ [18], a non-parametric
Bayesian-based latent factor model [19], and a weighted
trace-norm regularization-based model [20]. He et.al [64]
propose a co-learning LFA model for graph analysis, which
efficiently figures out an optimal arrangement of clusters for
vertices in an attributed graph by formulating the task as a
fuzzy constrained optimization problem. Meanwhile, He
et.al [65] propose a multi-view LFA model, which uses an
effective multi-view learning scheme [65] to learn the latent
space from multi-view vertex features, there modeling the
inter-relationship between pairwise vertices.

Considering existing HiDS matrix analysis models, a
latent factor analysis (LFA) model is very popular owing to
its high scalability and efficiency [21-25, 47, 48]. An LFA
model essentially targets at constructing a HiDS matrix’s
low-rank approximation based on its known data only in
the following working-flow:

a) Mapping the row and column entities of a target HiDS
matrix into a unique and low-dimensional LF space;

b) Constructing a learning objective on an HiDS matrix’s
observed data and their related LFs;

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZYY
高亮

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

¢) Minimizing the learning objective with the desired LFs to
make them precisely represent the known data of an

HiDS matrix; and
d)Constructing the desired low-rank approximation to the

target HiDS matrix with the achieved LFs.

As illustrated by prior research [22, 25, 26], a stochastic
gradient descent (SGD) algorithm is highly efficient in
building an LFA model. However, the performance of an
SGD-based LFA model is greatly influenced by its learning
rate [16, 25, 26]. An inappropriately large learning rate
makes the model diverge while a too small one leads to slow
model convergence, i.e, many iterations are required to
make the model converge. Note that an HiDS matrix
generated by an industrial application can be huge. For
instance, the Douban matrix collected by the Chinese largest
online book, movie and music database Douban [27] has
16,830,839 entries scattering in 129,490 rows and 58,541
columns. Although its data density is 0.22% only, it contains
7.58 billion instances. When handling such a large-scale
HiDS matrix, it becomes very difficult and expensive in time
and computation to manually tune the learning rate of an
SGD-based LFA model.

Great efforts have been paid to address the issue of
learning rate adaptation in an SGD algorithm [28-30]. Duchi
et.al [28] propose the AdaGrad algorithm that automatically
adjusts the learning rate according to the sum squares of
past gradients at each update point. Zeiler et.al [29] propose
the AdaDelta algorithm that implements learning rate
adaptation based on the decaying average of all past
squared gradients instead of the accumulated squared
gradients adopted by AdaGrad. Li et.al [30] propose the
AdaError algorithm that is more robust with noises. It
adopts smaller learning rate to cope with lager training
errors, and vice versa. Kingma and Ba [49] propose the
widely-adopted Adam algorithm. It dynamically estimates
the learning rate based on the exponentially decaying
square average and exponentially decaying average of past
stochastic gradients, as well as dynamically adjusts the
learning direction according to last update. It is also
frequently adopted to build a deep neural network.

Although the aforementioned methods correctly
implement leaning rate adaptation in an SGD algorithm,
they drastically increases the time cost per iteration when
building a learning model. This defect is even more
significant when applying them to building an LFA model
on an HiDS matrix. As unveiled in [12], AdaDelta, AdaGrad
and Adam all make an LFA model’s time cost per iteration
increase significantly. Although they indeed implement
learning rate adaption as well as accelerate an LFA model’s
convergence rate, i.e., make it converge with less iterations,
they still lead to increase of total time cost [12]. It should be
pointed out that with its efficient learning rate adaptation,
an Adam-like algorithm actually outperforms a standard
SGD-based LFA model in terms of computational efficiency
in spite of the aforementioned defect. This is because to
achieve the best performance, a standard SGD-based LFA
model calls for manual tuning of its learning rate, which is
extremely time-consuming. However, can we find another
path to learning rate adaptation in an SGD-based LFA
model without additional computation burden?

As unveiled by prior study [31], a particle swarm
optimization (PSO) algorithm can enable the adaptation of
hyper parameters in a learning algorithm. Meanwhile, a
PSO algorithm further has the advantages of high efficiency
and compatibility [32-34, 53-59]. Nonetheless, a standard
PSO algorithm often suffers from premature convergence
when dealing with complex tasks [35-37], such as the
bi-convex problem in an LFA model. To address this defect
of a PSO algorithm, various efforts have been made,
resulting in a pyramid of PSO extensions. They can be
mainly divided into two categories:

a) Hyper-parameter incorporation. Ratnaweera et al. [54]
incorporate time-varying acceleration coefficients and
inertia weights into a PSO algorithm to efficiently control
its local search and global convergence. Dong et al. [55]
model PSO as a dynamic quadratic programming model
with box constraints and set its parameters with a
dynamic forgetting factor to improve its exploration
competence.

b)Searching strategy adjustment. Liang et al. [56] adopt
particles” historical information to improve the swarm
searching ability. Zhan et al. [57] propose an orthogonal
learning strategy to adjust the flying direction of each
particle for enhancing the swarm searching ability.
Behnamian and Ghomi. [58] propose to compoundthe
population-based evolutionary searching and local
searching of simulated annealing to enhance the
searching ability of PSO. Chen et al. [60] integrate an
aging strategy into the particle evolution for addressing
the problem of premature convergence. Xia et al. [62]
propose a multi-swarm PSO algorithm that well balances
the exploration and exploitation during the swarm
searching process. Gong et al. [59] adopt genetic operators
to generate exemplars that interact with particles
bi-directionally, thereby enhancing the swarm searching
ability. Li ef al. [61] enable information sharing among
particles for enhancing their mutual interaction, thereby
improving the swarm searching ability.

The aforementioned PSO extensions, in spite of their
efficiency, all perplex the evolution process of a standard
PSO algorithm with more parameters or more complex
searching strategies. When applying them to a learning
model, a lot of tuning tasks are necessary to make them
function. When the target model is computationally
expensive to build (like an LFA model defined on a
large-scale HiDS matrix), such tuning can be highly
expensive. Thus, the critical issue of complexity again arises:
is it possible to implement a PSO algorithm with good
searching ability without increasing its complexity, thereby
building an LFA model with efficient learning rate
adaptation?

To answer this question, this study presents a
position-transitional particle swarm optimization (P?SO)
algorithm, which integrates more ‘dynamic’ information
into the evolution rule of each particle for enhancing the
vitality of the whole swarm, preventing it from premature
convergence. Then we integrate P2SO into an SGD-based
LFA model for making its learning rate self-adaptive, and
further propose a P25SO-based LFA (PLFA) model with high
computational efficiency and prediction accuracy. More

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

importantly, it does not bring additional computation

burden into its evolution process, thereby achieving high

efficiency. Main contributions of this paper include:

a) A P?SO algorithm is proposed. It amplifies the effect of
evolution velocity in a PSO algorithm, thereby improving
the swarm searching ability. A P2SO algorithm
successfully overcomes the defect of premature in a
standard PSO algorithm without perplexing its evolution
process, thereby exhibits ease of implementation and
good compatibility with complex and expensive models
like an LFA model concerned in this study;

b) Based on a P?SO algorithm, a PLFA model is proposed. It
makes its learning rate self-adaptive, thereby avoiding
expensive and tedious tuning process for its learning rate.
Owing to the good searching ability and high
computational efficiency of a P?SO algorithm, a PLFA
model’s computational efficiency and prediction accuracy
for missing data of an HiDS matrix is ensured;

c) Theoretical convergence analysis for a PLFA model; and

d)Detailed algorithm design and analysis for a PLFA model,
illustrating that it is highly efficient in both time and
storage.

Empirical studies on four HiDS matrices from industrial
applications demonstrate that when compared with LFA
models relying on an SGD algorithm, a standard
PSO-incorporated SGD algorithm and an Adam algorithm,
a PLFA model possesses the following virtues:
a)lts learning rate adaptation is implemented more

efficiently, which makes its computational efficiency
highly competitive. Its time cost is much less than an LFA
model relying on standard SGD or Adam, in spite that the
latter is a highly popular algorithm with learning rate
adaptation; and

b)Its prediction accuracy for missing data of an HiDS matrix
is impressive. It generates more accurate predictions for
missing data than its peers do on most testing cases,
indicating that the enhanced swarm searching ability of a
P250 algorithm enables an PLFA model to represent an
HiDS matrix more precisely.

According to the authors’ best knowledge, a PLFA model
implements learning rate adaptation in an SGD-based LFA
model more efficiently than any other models do. Section 2
gives the preliminaries. Section 3 presents the methods.
Section 4 provides and analyses the empirical study results.
Finally, Section 5 concludes this paper.

2 PRELIMINARIES

2.1 Problem Statement
Firstly, let us review the following definitions:

Definition 1: An HiDS matrix. Given two large entity sets U
and I, Z is a |UIx|Il matrix where each entry z.; denotes a
certain relationship between entities u€U and i€l. Let A and
I' denote the known and unknown entry sets of Z, Z is an
HiDS matrix if |AI<IT1.

Definition 2: An LFA model. Given Z and A, an LFA model
constructs an estimator Z=PQT with rank-f LF matrices P and
Q, where Pis |UIxf, Qis |IIxfand f<min{I U], Il}.

Note that f represents the dimension of an LF space, P and Q
consist of LFs reflecting characteristics of U and I described
by A, respectively.

To acquire LFs hidden in A, an objective function is
desired. We commonly adopt the Euclidean distance to
model the objective function [21, 22] for generality (while
our methods are adaptable with other objective functions):

e(PQ)= Y (2, -pal), (1)

where z.; denotes a specified element in Z, px and g: denote
the u-th and i-th row vector of P and Q, respectively.

As described in prior study [16, 21, 22, 25, 26], to perform
LFA on an HiDS matrix is ill-posed. Consequently, it is
essential to apply regularization to its objective function for
avoiding overfitting. The Tikhonov regularization is a
widely-accepted choice for such a purpose [21, 22]. Let
Zui=puqi’, with the Tikhonov regularization (1) is extended as:

¢(P,Q)= ZA((ZM,I-—%,I-)Z”P p.lh+Aolp 2))

i

where Ar and Ag are regularization constants.

2.2 An SGD-based LFA Model

When performing LFA on an HiDS matrix, an SGD
algorithm enjoys its fast convergence and ease of
implementation [22, 25, 26]. With it, (2) is minimized with
desired LF matrices P and Q as:

SGD Ceptt-n-Ve (p),

argmine(P,Q):VzulieA: P puil 1 M'l(p:)

ho g g7 —n-Ve, (q7).

where 7 and (7-1) denote the t-th and (7-1)-th update points
by SGD’ gu,i = (Zu,i - puq;'r)2 + /\P pu

instant error on the training instance z.€A and LF vectors pu
and gqi, n is the learning rate, respectively. By making
ev=zui-puqi’ and expanding the gradients in (3), we achieve
the following learning scheme:

©)

2‘*%"%"2 denotes the

SGD
argmine(P,Q) =>Vz, eA:
P.Q

et (e g -4,), @
g a e (et py = Ay).
As proven in [38, 39], an SGD-based LFA model converges

well with appropriate chosen values of 7, which actually
arises from the Robbins-Siegmund theorem [40].

2.3 A Standard PSO Algorithm

A standard PSO is an evolutionary meta-heuristics
algorithm adopted in many fields [32-37]. In it, S particles of
a swarm fly around D-dimensional search space at a certain
speed. Each particle serves as a potential solution to the
current optimization task. Their movements depend on two
factors, i.e., their velocity and position. More specifically,
the velocity and position of the j-th particle at the t-th
iteration are denoted by two vectors, i.e., vi(t)=(vji(t), vj2(t), ...,
vip(t)) and xi(t)=(xj1(t), xj2(t), ..., xip(t)) where Vjmax=(vjmax1,
Ujmax2, ..., UjmaxD), Xjd(F)E[Xmind, Xmaxa], and 1<d<D. Note that

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

Ujmax is the maximum velocity of the whole dimension, Xmin.
and xmaxd are lower and upper bounds for the d-th
dimension, respectively.

During this evolution process, each particle determines
its next flying through its own flying experience and the
best flying experience among its peers. One is named pbest,

e., pb=(pbjy, pbiz, ..., pbip), which is the best position
discovered by itself, and the other is named gbest, i.e.,
gb=(gb, gb>,...,gbp), which is the best position in the whole
swarm. Thus, the j-th particle evolves at the ¢-th iteration as:

vj(t) = wvj(t—1)+clr] (pbj(t—l)—xj(t—l))
1, (gb(t-1)-x,(t-1)), ®)

5 (0)=x,(1-1)+5,(1)
where w is the non-negative inertia constant, c1 and c2 are

cognitive and social coefficients, r1 and r2 are two uniform
random numbers in the range of [0, 1], respectively.

3 METHODS

3.1 A P?SO Algorithm

In a standard PSO algorithm relying on (5), each particle’s
evolution depends on three learning factors:
a) Its latest evolution velocity vj(t-1),
b) An adjusting velocity from its latest position xj(f-1) to its
latest locally optimal position pbj(t-1), and
c) An adjusting velocity from xj(t-1) and the latest globally
optimal position of all particles gb(t-1).
Thus, each particle evolves based on its latest evolution
velocity which reflects the historically learning inertia, and
flies towards its historically best position and the globally
best position of the whole swarm, thereby making the
whole swarm finally achieve a globally steady solution.
Meanwhile, randomness is injected into this process to
strengthen the searching ability of each particle, preventing
the whole swarm from being stacked by some local solution.
In other words, a standard PSO algorithm makes its
particles evolve based on their own experience and swarm
experience simultaneously. However, during its evolution
process, the ‘statistic’ positions, i.e., xj(t-1), pbi(t-1) and
gb(t-1), heavily affect the evolution of each particle, making
the whole swarm suffer from the premature issue, i.e.,
become steady too early. From this point of view, we
propose to incorporate more ‘dynamic” information into the
evolution scheme of each particle. Thus, we make the j-th
particle evolve at the ¢-th iteration as:

o, (1) =0t - 1>+cr<pb (1e-1)
+cr(gb()
+p(clr1+c2r)((t 1) v(t 1))

xj(t)zxj(t—1)+vj(t);

(6)

where p denotes a non-negative coefficient in the range of [0,

1]. Next we will analyze the effect of (6) in the cases of p=0,
p=1 and 0<p<1 in detail.

3.2.1 Case p=0
By substituting p=0 into (6), we clearly achieve (5), i.e., a

standard PSO algorithm. As analyzed before, its evolution
of each particle in this case is mostly decided by the
adjusting velocities, i.e., (pbj(t-1)-xj(t-1)) and (gb(t-1)-x;(t-1)),
as shown in Fig. S1(a) in the Supplementary File. Hence,
each particle tends to approach its local optimal position
and global optimal position of the swarm quickly, making
the whole swarm suffer from premature convergence.

3.2.2 Case p=1

By substituting p=0 into (6), we achieve another border
case as follows:

v, (t) =wo, (t - 1) +c1, (pbj (t - 1)) A (t 1)
+c,f, (gb(t—l))—chZUj(t—l), (7)
X ()=, (t=1)+,(t);

With (7), the evolution of each particle depends on the
following factors: a) the latest evolution velocity, i.e., vj(t-1),
b) the adjusting velocity decided by the direction vector
from the origin point to the locally optimal position and the
latest evolution velocity, i.e., (pbi(t-1)-0) and vj(t-1), and c)
the adjusting velocity decided by the direction vector from
the origin point to the globally optimal position and the
latest evolution velocity, i.e., (gb(1)-0) and vj(t-1). The whole
process is illustrated in Fig. S1(b) in the Supplementary File.
Note that as shown in Fig. S1(b), with (7) more dynamic
information relying on vj(t-1) is injected into the particle
evolution, thereby making the whole swarm more active to
avoiding premature convergence.

3.2.3 Case 0<p<1
When p lies in the scale of (0, 1), (6) is reformulated as:
v, (t) =wv, (t - 1) +cr, (pbj (t - 1) -X, (t - 1))
+czr2(gb(t —1)—x].(t—l))
+pey (x,(t=1)-v,(t-1)) (8)
+pczr2(x].(t —1)—0j(t —1)),
xr’(t) = xi(t —1)+vj(t);
where we clearly see the combination of (5) and (7): the
evolution velocity does not only depend on the adjusting
velocities decided by the static positions, but also depend on
the dynamic evolution velocities as analyzed in the previous
section. Its evolution process is depicted in Fig. S1(c) in the
Supplementary File. From it, we see that with 0<p<l we

arrive at an intermediate state between two extreme cases of
p=0 and p=1.

3.2.4 Summary

Based on the above inferences, we achieve the particle
evolution scheme for an P?SO algorithm. It contains a
standard PSO algorithm as one of its special case. It also
brings more dynamic information into the evolution process
for preventing the swarm from premature convergence
when p#0. With such characteristics, next we implement
efficient learning rate adaptation in a PLFA model.

3.3 APLFA Model
Following the principle of a PS5O algorithm, we

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

manipulate a swarm consisting of S particles, where the j-th
particle is the learning rate 7; for the same group of LFs.
Then following (6), 1/'s evolution scheme is given by:

Vje{l,...,S}:
vj(t) = wvj(t - 1) +cr (pbj(t - 1) —r]j(t - 1))
+c2r2(gb(t—1)—17}.(t—1)))

+p(en +C272)(77,-(t —1)—Ui(t —1)),

n,(t)=n;(£=1)+v,(t).

Thus, each particle searches for the optimal solution in an
one-dimensional space for the learning rate only.

According to prior research [31], the velocity and
searching space of each particle is constrained to be in a
certain range:

v ifvi>v
v“: max] max

v ifol<v
min] min

(10)

nj nm'm’ if 77]’ < ﬂmin'

where vmax and vmin denote the upper and lower bounds for v,
Nmax and 7min denote the upper and lower bounds for 7,
respectively. Note that these threshold values are mostly
empirical and problem-dependent. In an PLFA model, we
set Umax=1, Umin=-1, max=28, and nmin=2"2, respectively.

For better acquiring LFs from HiDS matrices, we adopt
the following two fitness functions for the j-th particle:

F, - \/[Zg(z —i(j)u,i)2] ﬂQ
E) =[2 bMQ

s
z,,;€Q

t {ﬂmax’ lf Tl]t > Tlmax’

(11)

Zu,i - Z(j)u,i

where |-las calculates the absolute value of a given value, Q
denotes the validation set and is disjoint with A, and Zgu,
denotes the estimation value regarding to the known
element z.:€Q) generated by the j-th particle, respectively.
To be shown later, a PLFA model adopts Fij or Fa
according to the performance evaluation metrics.

Note that Vje({l,...,5}, nj is linked with the same group of
LF matrices, i.e., P and Q, which are trained by an SGD
algorithm. Thus, its t-th iteration actually consists of S
sub-iterations, where P and Q are updated in the j-th
sub-iteration as follows:

P2S0-SGD
argmins(P,Q) = Vz,,eA:
P.Q

Fow Pt (efeaiy ~derfy). 02

q(Tj)i < Q(Tj); + ’7; ' ’(e(T;);/f 'P(T,'):, -y "7(1,')3)'
where the footnote (j) on pu, gi and ewi denotes that their
current updates are linked with the j-th particle, ie., 7.
Based on (9)-(12), we achieve a PLFA model for HiDS
matrices with learning rate adaptation. Next we analyze its
convergence in theory.

3.4 Convergence Analysis for a PLFA Model

We start with recalling the definitions of L-smooth and
strong convexity of a continuously differentiable function
f(x) [66] as follows.

Definition 3: L-Smooth. f(x) is L-smooth if Vx, yER’ the
following inequality holds:

[VF () -V (v)], < L|x~v],.

Definition 4: Strongly Convex. f(x) is strongly convex if
there exists a constant >0 such that Vx, y€R/ the following
inequality holds:

7(3)2 F(v) + VF (v) (x-v) +lx -

Then in order to conveniently analyze PLFA’s convergence,
we reformulate the objective function (2) as:

e= 3 (-t} + Al + Akl)= X e 09

ZH,! €

(13)

(14)

where ¢ = (Zu,i -p.4a;)2 +A, 2 +4, ||q1||z denotes the

pH

instant loss related with a single instance z..€A and LF

vector pu and gi.

Although PLFA makes its learning rate self-adaptive with
P250, it still adopts SGD-based learning scheme to update
the desired LFs. Hence, we aim to show that with this
P250O-incoporated and SGD-based learning scheme, a PLFA
model converges. Meanwhile, note that its learning
objective (15) is non-convex. According to prior research in
the optimization community [68, 70, 76], necessary
relaxations are made to achieve the final proof:

a) We focus on each instant loss ¢ui instead of the sum loss ¢
according to the single-pass of an SGD algorithm;

b) We analyze the model convergence with respect to an LF
vector while fixing its coupled LF vectors in the
non-convex terms of (15). For instance, gi is fixed to show
the model convergence with the update of p.. Note that
the model convergence with the update of gi can be
achieved in the same way.

Then considering ¢, we first have the following lemmas.
Lemma 1. eui is L-smooth when L is the maximum singular value
of (qi"qi+ArLy) as Irbe an fxfidentity matrix.

Proof. By replacing pu in €4 with arbitrary vectors pg and pn

which are independent of each other, we have

Vgu,i(pg)_vgu,i(ph)

=—(2,, =P)9+ Aop, + (20— a0)9~ Aop,

=(p=p) @i+ Asl,),

=|ve,(p,) Ve (n), =|(p, ~p.) '+ A1)
< ”(pg —p)| [(afq, + 2,0,) -

2
According to the property of a matrix’s L-norm [69-72], the

(16)

2

term “(qfqﬁ/\l,l f)“z denotes the largest singular value of

(q9"gi+Arly). Based on the above inferences, Lemma 1 stands.O
Lemma 2. €. is strongly convex when f is the minimum singular
value of (qi"qi+Arly).

Proof. Given arbitrary vectors p; and pi, we consider the state

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

of eui at pg, and then consider its its second-order
Taylor-expansion at pr as:

e (r)=en (m)+ Ve, (0P 7))
+%(Pg)V, (p) (PP) -
=e¢,.(p,)-e.(r,)
=ve, (p)(p. 1) +%(Pg)%, () (P~ P) -
Then considering Lemma 2, it states that
e (p) e (n)2 Ve (p)(p 1) + %ﬁ"iﬂg -pl. a8

Thus, it is desired to appropriately select f to make the
following inequality stand,

(17)

(pg - ph)V2€u,i (ph)(pg - ph)T 2 ﬁ"pg - ph"z N (19)
From the expression of ¢u,, we have:
vzgu,i(ph) :qx‘Tqi +)\Plf' (20)

By substituting (20) into (19), we reformulate it as follows:

(pg_ph)(q;rqi+APIf_ﬁIf)(pg_ph)T 20, (21)
which actually requires the matrix (q'g+Arl-pl) to be
positive semi-definite (PSD). As unveiled by [70-73], when
is the minimum singular value of the matrix (g'gi+Arl),
(q*q+Arl-Bly) is PSD. Hence, Lemma 2 stands.O

Thus, considering the j-th sub-iteration in the f-th
iteration of an PLFA model, on z..€A pu is updated with the
following scheme:

T -1 t-1 -1
p())u <_p(;)u _T]/ vgu,z(p(;)u) (22)

Assume that p.* is the optimal state of p., we have

2 2
I - == ve (e) =il
-1 * 2 t-1 -1 -1 * T
=PGy =P, 21, Vé,(P(,)u)(P]u—Pu) (23)

-1 2 -1 >
+ (”f) “V‘Si(p(f)u))
Note that the expectation of (23) is given by:

E[e j=E[i}_zn;lE[Wf(Pfj)i)(P;l _P;)T:|

Pijju =Pu

(24)
Based on (14) and Lemma 2, we achieve that

e ()2 e (i)+ ve () o) +% 5

* -1 2
P.—P (j)u N
(25)

Moreover, since p." is the optimal state of p., we further have

eu(p)<ens(ri) (26)
Then following Lemma 2, we evidently have:
-1 * -1 T 1 * -1 2
V“%(P(;)M)(Pu —P(,-)u) +Eﬁ Pu =P, > 0
-1 7-1 * T 1 7-1 * 2 (27)
= Vg, (P(]-)u)(P(]-)u - pu) > BPGo =P,

By substituting (27) into (24), we have:
2 bin-riL]
2 (28)
t-1 2 t—1 2 7-1 ’
<(1-7. ﬁ)E[J*(Th)E{“Vsi(p(j)u)z}.

Following [68], let the positive real number r fulfill the
following condition:

T *

Pl ™ Pu

-1 *
Pl = Pu

2
Emwi (vi7:) J <2, 29)
and substituting (29) into (28), we infer that
2 2 2
E[\\p(j)l, -7, J <(1- n}’lﬁ)E[Pl J +(nr) . @0)

Let 77;71 =a/Bt for a constant a>1, then (30) is rewritten as:

T2 b ()

2
As discussed in [68], EU J denotes p.'s expected

E[H”@)u P Pin P @31)

P~ P

squared distance to pu" at the t-th update point of the j-th
sub-iteration in the f-th iteration. By expanding the iterative
expression of (31), it satisfies the following condition:

2 2 2.2
E[}Slmax ‘ , ar ,
2 t 2 fa—1

where P(lj)u denotes the initial state of pgu at the j-th

1 *

Py = Pu

T *

PGy ~Pu

(32)

sub-iteration of the t-th iteration.
Recall Lemma 1, i is L-smooth. Thus, by utilizing the
property of an L-smooth function, we have:

€ (p(j)u)_gu,i (P:) < %‘

Note that ¢, (P(T,-)u) > Eu,i(p:) since pu* is the optimal state of

(33)

T * 2
Pliu = Pul,

pu. So by taking the expectation of (33), we achieve:

E[Su,i(pgj)u)_su,i(p:)}S§E|: 2:|' (34)

2
By substituting (32) into (34), we infer the following

*

Pl ~Pu

inequality:
1. LQ
E[eu,i(p(j)u)—euri(pu)} < 250‘)) (35)
where
. . 2 0(272
Q(O‘):max{‘ Py ~Pu Zlm} (36)

Let A(u) denote the subset of A related to u€U, then (35) can
be expanded with the consideration on Vz.:€A(u) to achieve:

= > E[su,i(p(/.)u)—eu,i(p:)}SM—LQW'

Z,; eA(u) 2t

37)

Similarly, Vu€U whose related LF vector p. is updated with
the learning scheme (22), (37) can be further expanded as
follows:

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

{3 5 (o))

=2 2)E[ew‘(%u)_E”f"(pzﬂ = %

uel z, ; eA(u

(38)

where the last step is achieved with the condition of

Z|A(u)|=|A|. With (38), we see that with the learning

uell

scheme of PLFA, p. converges at p.* Vu€lU with sufficient
training iterations, i.e., t is big enough. Following the same
principle, we can achieve that g: converges at g:* Vi€l. Thus,
we see that an PLFA model converges with its
P2S0-incorporated learning scheme (12).

3.5 Algorithm Design and Analysis

Based on the inferences previous, we design the
Algorithm PLFA in the Supplementary File. From it, we see
that the storage cost of a PLFA model mainly depends on
two factors: a) auxiliary matrices for LFA, and b) auxiliary
vectors for PSO. More specifically, 1) P'M" and Q'N'f cache
the LFs; 2) V'$! caches the evaluation velocity, H'S' caches the
latest position, and pb's' caches the best local position of
each particle. Thus, a PLFA model’s storage cost is given as:

S= @((|M| +|N)x £+ 35) ~ ®((|M| +|N])x f), (39)
which is linear with the number of involved entities.

On the other hand, via the cost analysis of each step in
Algorithm PLFA, we achieve its time complexity as follows:

T =0((|M]+|N])x f +5+25x D+Cx(Sx|A|x3f +145))
<0l(af<Cxsxf)

(40)

where the last step is obtained by eliminating the constants
and lower-order terms. Hence, the time complexity of PLFA
is linearly related to |Al. Based on the above analysis, a
PLFA model has proven to be highly efficient in both
computation and storage.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 General Settings

Evaluation protocol. In industrial applications [1-12], in
order to recover the unknown relationships among
involved entities, it is highly significant to precisely estimate
missing data of an HiDS matrix. Thus, the task of missing
data prediction is adopted as the evaluation protocol.

Evaluation Metrics. For a tested model, root mean
squared error (RMSE) and mean absolute error (MAE) are
frequently used to validate a tested model’s prediction
accuracy for missing data of an HiDS matrix [4, 12, 13, 16, 21,

22, 47, 48];
RMSE = \/[NER —f,m)zJ /r
Zu,:Er

MAEz[3 | -2 l]/r
z, €l

7

zZ

u,i u,i 4

where I' denotes the testing set, which is disjoint with A and
Q). Note that we set Fi() as the fitness function for PLFA with
RMSE as the evaluation metric, and Fzj with MAE.
Meanwhile, the computational efficiency of tested models
is concerned. So we record the converging time cost of each
model. All experiments are performed on the same bare
machine with an Xeon 2.40-GHz E5-2680 CPU, 512GB

memory, and Windows 7 OS. All tested models are
executed in JAVA SE 7U60.

Datasets. We adopt four HiDS datasets in the
experiments.

a)D1: MovieLens 10M. It includes 10,000,054 ratings of
10,681 various movies by 71,567 users. Its rating scale is in
the range of [0.5, 5], and rating density is 1.31%. It is from
the MovieLens system [41] maintained by the GroupLens
research team.

b)D2: Extended Epinion. It contains 13,668,320 observed
comments from 120,492 users on 775,760 articles, which is
collected by Trustlet website [42]. Its rating scale is [1, 5].
Its density is only 0.015%.

c) D3: Flxiter. It has a density of 0.11% only and a rating
scale of [0.5, 5]. It includes 8,196,077 known entries from
147,612 on 48,794 movies, which is collected from the
Flixter commercial website [43].

d)D4: Douban. Collected from Chinese largest online book,
movie and music database Douban [27], it includes
16,830,839 known entries in the range of [1, 5], by 129,490
on 58,541 items. It has density of 0.22% only.

Note that all datasets are also extremely sparse and

high-dimensional. Hence, the experimental results on them

are highly representative.

All HiDS matrices are randomly divided into ten disjoint
and equally-sized subsets. In each experiment, we adopt the
70%-10%-20% train-validation-test settings, i.e., we adopt
seven subsets as training set A to train a model, one as
validation set Q to validate the training process, and finally,
the last two as the testing set I" for showing the performance
of each model. Ten-fold cross-validation settings are applied
to such a process for objective results.

The training process of a tested model terminates if a) its
consumed iteration counts reaches the preset maximum, i.e.,
1000; b) the model converges, i.e., the error difference
between two consecutive iterations is smaller than 10-.

Model Settings. In order to obtain objective results, we
adopt the following settings:

a) The performance of an LFA model is easily influenced by
the LF dimension. Thus, the LF dimension of each model
involved in the experiments is set at 20 uniformly, and
initialized with the same randomly generated array
whose elements scatter in the range of [-0.05, 0.05]
according to prior research [21, 22];

b) Note that as discussed in [63], for LFA models depending
on 2 norm-based regularization, diversifying Ar and Ag
can yield slight accuracy gain. However, it calls for
time-consuming search with Ar and Ao. Hence, in this
study we adopt the same empirical value for
regularization coefficients on P and Q, ie., setting
Ar=A¢=0.03 uniformly following [12].

c)In PSO and P2SO, we choose the same settings for the
hyper parameters: w, r1 and r2€(0,1) and is generated by a

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

uniform distribution, S=10, c=c>=2 [32], v€[-1,1], and
Vje(l,...,S}: nig[212, 28].

d)Each set of experiment is repeated for 20 times
independently for eliminating the biased results causing
by randomness in LF initialization, PSO and P2SO.

4.2 Effect of p
As discussed in Section 3, a P2SO tunes the static and

dynamic adjusting velocities through the hyper parameter p.

Hence, it is necessary to conduct parameter sensitivity tests

with it for a PLFA model. Results of sensitivity tests are

given in Figs. 52 and S3 in the Supplementary File. From

them, we have the following findings:

a)A PLFA model’s prediction error decreases as p
increases. For instance, as depicted in Fig. 52(a), its RMSE

on D1 with p=0.0 and 1.0 is 0.7993 and 0.7858, respectively.

The gap ratio between its lowest and highest RMSE is
1.69%. In terms of its MAE on D1, from Fig. S3(a) we see
that its MAE is 0.6147 and 0.6040 when p=0 and 1.0, where
the gap ratio is 1.74%. Similar situations are found on
D2-D4. As discussed in Section 3, when p=0, a P?SO
algorithm becomes a standard PSO algorithm which
solely depends on ‘static’ adjusting velocities solely
depending on the static positions connected with each
particle. On the other hand, when p=1, its adjusting
velocities are mostly ‘dynamic” decided by the direction
vectors linked with its locally optimal position, globally
optimal position of the whole swarm, along with its latest
evolution velocity. Hence, from this phenomenon, we see
that a PLFA model makes a particle’s evolution depend
on such ‘dynamic’ adjusting velocities solely is helpful in
improving its prediction accuracy for missing data.

b)A PLFA model’s converging iteration count increases as
p increases. For instance, as shown in Fig. S2(b), the
converging iteration count of a PLFA model in RMSE on
D1 is 10 and 17 as p=0 and 1.0, respectively. In MAE, a
PLFA model’s converging iteration count is 10 and 17
respectively, as depicted in Fig. S3(b). Similar situations
are also found on the other datasets, as shown in Figs.
52(b) and S3(b). As analyzed in Section 3.2, when p#0, a
P?50O algorithm can preventing the swarm from
premature convergence. Hence, it is reasonable that a
PLFA model consumes more iterations as it increases.
Meanwhile, as the converging iteration count increases, a
PLFA model's converging time cost also increases
correspondingly, as depicted in Figs. S2(c) and S3(c).

c) Based on the above results and analyses, we see that p
plays an important role in performance of a PLFA
model. When it is small, a PLFA model converges with
fewer iterations and less time cost but suffering a loss of
prediction accuracy. With it increases, the converging
iteration count and time cost of a PLFA model increases,
but it obtains an accuracy gain. However, to be shown
next, owing to its self-adaptation of learning rate, a PLFA
model is able to achieve very competitive prediction
accuracy for missing data, as well as very high
computational efficiency when compared with a
SGD-based LFA model.

d)As p set appropriately, PLFA implements learning rate

adaptation efficiently. Fig. 54 in the Supplementary File
depicts a PLFA model’s learning rate adaptation and
learning curves as p varies on D1. Note that similar
situations are also encountered on the other datasets.
From Fig. S4(a)-(c), we clearly see that the rate adaptation
trend of 1 varies in p. According to Fig. S4(a), as p=0, 1
maintained by particles 1-10 all are set to fmin initially, and
then grows gradually with more iterations. Finally, n
maintained by particles 1-10 stabilize at nmax, making the
resultant model also converge. As shown in Fig. S4(b), as
p=0.6, 1 maintained by particles 1-10 fluctuate between
Nmin and fmax during the training process, and then
converge at nmax along with the convergence of the
resultant model. As depicted in Fig. S4(c), as p=1.0, 1
maintained by particles 1-10 is adjusted in a similar way
with the case of p=0.6. However, the evolution of 1 by
particles 1-10 is implemented more carefully (which is
reflected by the perplexed evolution curves of 1 by
different particles in Fig. S4(c). Thus, as p=1, a PLFA
model is able to better represent an HiDS matrix at the
cost of more training iterations, as shown in Fig. S4(d).
This phenomenon is consistent with our discoveries
discussed in points a)-c) mentioned above.

4.3 Effects of Evolution Parameters

In Section 4.1, we have already provided the empirical
scale of evolution parameters in an PLFA model. However,
it is still necessary to test their effects in an PLFA model’s
performance. Hence, in this part of experiments we analyze
the effects of swarm size S, cognitive and social coefficients
c1 and ¢z, bound of velocity vmin and vmax, n's bound 7min and
Nimax, in the performance of an PLFA model. Note that w,
and r2 are excluded since they all are random numbers
generated from a uniform distribution in the range of (0, 1)
like other PSO algorithms [32-37]. Meanwhile, only results
on D1 are reported for a concise report since results
encountered on the other datasets are highly similar.

4.3.1 Swarm size: S

S’s effects in a PLFA model’s performance as RMSE and
MAE as the evaluation metric are recorded in Tables S1 and
S2 in the Supplementary File, respectively. From Tables S1
and S2, we clearly see that a PLFA model’s performance is
affected by the swarm size of P2SO. More specifically, we
have the following findings:

a) As S increases, a PLFA model’s time cost per iteration
increases, while its converging iteration count decreases.
According to Algorithm PLFA, the swarm size S actually
affects the ‘inner loop” of a PLFA model’s each training
iteration: it will traverse A for S times in a single iteration
to update LFs with the learning rate maintained by the
incorporated P2SO algorithm. Hence, it actually traverses
A for Sxt times as t denotes the converging iteration count,
as recorded in the column of ‘A Traversing Counts’ in
Tables S1 and S2. From it, we further see that as S
increases, a PLFA model actually traverses A for more
times to converge, which indicates that the increasing
swarm size increase the exploration ability of PLFA,
preventing it from premature convergence. From this
point of view, it is reasonable that a PLFA model’s time

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

cost per iteration and total time cost both increases as S
increases.

b)As S increases, a PLFA model’s prediction accuracy for
missing data of an HiDS matrix slightly increases. From
Tables S1 and S2, we see that an PLFA model’s RMSE and
MAE decreases as S increases. For instance, on D1 its
RMSE is 0.7885 when S=2, and 0.7858 when S$=10. The
accuracy gain by increasing S from 2 to 10 is 0.34%. Note
that this slight accuracy gain is achieved at the cost of 40%
more time consumption. From this point of view, small S
is suitable for applications with real time needs, while
large S can be adopted in applications seeking for highly
accurate representation of an HiDS matrix.

4.3.2 Cognitive and social coefficients: ¢, and ¢,

c1 and c's effects in a PLFA model’s performance are
depicted in Fig. S5 in the Supplementary File. From it, we
see that a PLFA model’s prediction error fluctuates
drastically when c1 and c2 are less than 1.8. However, as c1
and c2 increases over 2.0, the prediction error of a PLFA
model becomes stable, as shown in Figs. S5(a) and (b).
Considering a PLFA model’s convergence rate, from Figs.

S5(c) and (d) we find its increasing trend as c1 and c: increase.

Thus, the time cost of a PLFA model also tends to increase
as c1 and ¢z increase, as depicted in Figs. S5(e) and (f). Based
on these results, we conclude that the widely adopted
empirical values of c1=c2=2.0 [32-37] can also be adopted in a
PLFA model to ensure its steady performance.

4.3.3 Bound of velocity: Vmin @and Vmax

vmin and vmax’s effects in a PLFA model’s performance are
depicted in Fig. S6 in the Supplementary File. Note that we
set |min|=|vmax| in our experiments. As shown in Fig. 56, a
PLFA model generally achieves good balance between
prediction accuracy and convergence rate as | Umin|=|vmax|=1.
Meanwhile, by comparing Figs. S6(a), (c) and (e), we see that
as vmin and vmax changes, a PLFA model’s accuracy is closely
related to its convergence rate and time cost: it can converge
with less iterations, while suffers from slight loss in
prediction accuracy. When adopting MAE as the evaluation
metric, the phenomenon is the same, as shown in Figs. S6(b),
(d) and (f). Therefore, it is suggested to adopt the empirical
values of |vmin|=|vmax|=1 and vmin=-vmax as suggested in [31].

4.3.4 Bound of n: Nmin @and Niax

In this part of experiments, we keep the relative
magnitude difference from fmin to 7nmay, i.e., making
Nmax=24x1min, and then let nmin increase from 2% to 2 to
validate how do fmin and 7nme affect a PLFA model’s
performance. The results are depicted in Fig. S7 in the
Supplementary File. From it, we see that as fjminand 7max set
too small, e.g., Nmin-2"° and Nma=2"" in our experiments, a
PLFA model’s converging iteration count increases, leading
to much time cost as shown in Figs. S7(c)-(f). However, as
fNmin and 7max set too large, e.g., Nmin-2¢ and nNma=22, a PLFA
model suffers from significant accuracy loss, as shown in
Figs. S7(a)-(b). Furthermore, from Figs S7(g)-(h), a PLFA
model is even unable converge when the learning rate is
beyond a certain bound. Fortunately, from Fig. S7 we see
that a PLFA model’s performance is not very sensitive to

Tmin tO Nmax. AS Nmin€[212, 28] and Nmin€[2:%, 24], a PLFA model
can well balance its time cost and prediction accuracy for
missing data.

4.3.5 Summary of parameter sensitivity tests

Based on the results of this section, we conclude that the
evolution parameter setting in a PLFA model can follow the
empirical guidance achieved in previous research regarding
PSO algorithms [31-37], which is given in the model setting
descriptions of Section 4.1.

4.4 Comparison Results

In this part, our goal is to compare the performance of a

PLFA model with that of an SGD-based LFA model and an
Adam-based LFA model. The following models are
included in this set of experiments:
M1: An SGD-based LFA model. Note that we choose it as
the baseline because a PLFA model’s each particle takes it as
the base model, as shown in Section 3.3. Hence, it is
reasonable to compare M1 with a PLFA model to see the
effect brought by a P2SO algorithm into it. Naturally, P25SO
is compatible with other LFA models relying on a learning
rate-dependent training process. Further investigations into
this issue are highly interesting and we plan to make them
in the future;

M2: A PLFA model with p=0. As discussed in Section 3.2, it

is equivalent with an LFA model relying on a standard PSO

algorithm; and

M3: An Adam-based LFA model. Note that an Adam

algorithm adjusts the learning rate during an SGD process

based on both the exponentially decaying square average
and exponentially decaying average of past stochastic
gradients [49]. It is a state-of-the-art adaptive SGD
algorithm frequently adopted to train deep neural networks.

Hence, it is highly representative to compare an

Adam-based LFA model with the proposed PLFA model to

validate its efficiency.

M4: A PLFA model with p=1. As shown in the previous

section, M4 is able to achieve highly accurate predictions for

missing data from an HiDS matrix. We hope to see its
performance gain when compared with M1-3.

Note that the learning rate of M1 is not self-adaptive.
Hence, we have tuned its learning rate on each dataset to
make it achieve the highest prediction accuracy on one fold
of each dataset, and adopt the same settings on the other
folds. Its learning rate settings on each dataset are recorded
in Table S3 in the Supplementary File.

Tables 54 and S6 in the Supplementary File summarize
their lowest RMSE, MAE and converging iteration counts;
Tables S5 and S7 in the Supplementary File summarize the
average time cost per iteration and total time cost. From
them, we have the following findings.

a) Owing to its incorporation of a P2SO algorithm, a PLFA
model implement efficient self-adaptation of learning
rate, and most importantly, without loss of prediction
accuracy for missing data of an HiDS matrices. For
instance, as described in Table S4, on D1, M4 has the
lowest RMSE at 0.7858, which is 0.18% lower than the
RMSE at 0.7872 by MI. Similar situations are also
encountered on the other datasets. The same results are

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

obtained in MAE, as recorded in Table S6. This
phenomenon is very impressive since M1’s learning rate
is carefully tuned to enable it to achieve the highest
prediction accuracy for missing data on each testing case.
However, M4, with its P?SO-based self-adaptation of
learning rate, can even achieve higher prediction accuracy
than M1 does (although the accuracy gain is slight). This
is indeed a significant progress. In comparison, as shown
in tables 54 and S5, e.g., M2’s prediction error is always
higher than M1, which is considered as its compromise
between the adaptive learning rate and prediction
accuracy for missing data. Nonetheless, such compromise
is never seen in M4. It turns out that with a P2SO
algorithm, it is possible to implement the self-adaptation
of learning rate in an LFA model without loss of
prediction accuracy. Moreover, M3 is also a learning
rate-adaptive algorithm, but it still suffers prediction
accuracy loss except on D2.

b)A PLFA model’s convergence rate is very fast. For
instance, as summarized in Table S4, M4 takes 17
iterations to converge in RMSE on D1, while M1 takes
1000. M4's converging iteration count is only 1.7% that of
M1’s. Similar situations are also encountered on other
testing cases, as shown in Tables S4 and S6. However,
M4’s converging iteration count is higher than that of M2.

The reason for this phenomenon is analyzed in Section 4.2.

In addition, M2-4 all outperform M1 in terms of
convergence rate owing to their self-adaptation of
learning rate.

c) A PLFA model’s computational efficiency is high. First
of all, it should be pointed out that the time cost per
iteration by M2 and M4 is higher than that of M1. This is
because in M2 and M4, there are S particles which make
each evolutionary iteration consist of S sub-iterations,
thereby making M2 and M4’s time cost per iteration
about S times that of M1’s. E.g., in our experiments we set
5=10 for M2 and M4. Hence, their time cost per iteration is
about ten times that of M1’s.

d)Considering their total time cost, however, the situation
is very different. Since M4 converges much faster than
M1, its total time cost is much less than that of M1. For
instance, as recorded in Table S5, on D1 M4 consumes 153
seconds to achieve the lowest RMSE, only 17.51% of 874
seconds by M1 does. The same situations are also found
on the other datasets. As shown in Tables S5 and S7, M2
consumes less total time than M4 does, but it suffers
significant accuracy loss which is discussed above. On the
other hand, M3, i.e., the widely-adopted Adam algorithm,
makes compromise of time cost for its self-adaptive
learning rate. Its total time cost is even significantly
higher than M1.

4.5 Summary

Based on the above results and analyses, we summarize
that by incorporating a P?SO algorithm into its learning
scheme, a PLFA model achieves efficient learning rate
adaptation, high prediction accuracy for missing data of an
HiDS matrix and low computation burden:
a) Owing to the highly dynamic evolution scheme of a P250O

algorithm, a PLFA model no longer suffers from
premature convergence; and

b) With its efficient learning rate adaptation, its prediction
accuracy is even higher than that of an LF model with
finely-tuned learning rate.

Hence, a PLFA model shows great potential to solve real

LFA problems raised in industrial applications.

5 CONCLUSIONS

How to appropriately select the learning rate is an
essential issue for an SGD-based LFA model. Existing
approaches to it mostly rely on a pre-tuning process on a
probe set, whose defects are two-fold: a) it is extremely
time-consuming to conducting linear or grid search for
setting the learning rate properly, and b) due to the
data-dependence of learning rate, the tuned results on a
probe set may not enable the best performance of a resultant
model on the target data. Existing approaches (like Adam)
to this issue all bring extra computation burden to the
model training process, which makes a resultant model cost
even more time than an standard SGD-based model does.

However, with a PLFA model proposed in this study, it
becomes possible to implement efficient learning rate
adaptation in an SGD-based LFA model without any
accuracy loss nor extra computation burden. A PLFA
model’s learning rate adaptation is implemented via a
swarm consisting of different learning rates applied to the
same group of LFs, which evolves via a newly-proposed
P250 algorithm without the risk of premature convergence.

In the future, we aim to address the following issues:

a) As unveiled by prior research, improved PSO algorithms,
e.g., adaptive PSO [37], switching delayed PSO [44],
switching local evolutionary PSO [45], swarm intelligence
PSO [49], and quantum mechanism based PSO [50], have
shown their impressive ability in addressing general
optimization problems. Are they compatible with our
problem, and if so, can we achieve further accuracy and
efficiency gain by incorporating their principle into a
P2SO algorithm for more efficient hypermeter-free LFA
models? This question remains open.

b)On the other hand, do other intelligent optimization
algorithms have the potential to build an LFA models
with learning rate adaptation? For instance, a beetle
antennae search algorithm [46] can solve an optimization
problem in way of evolution conveniently, yet it
commonly leads to accuracy loss. A brain storm
optimization algorithm enables a learning model’s high
representation learning ability [52, 53], but it relies on an
inner clustering process which can yield high
computational complexity. It is highly interesting to
implement hyper parameter-free LFA models based on
their principles.

REFERENCES

[1] T. Nguyen and Y. Shin, “Matrix completion optimization for
localization in wireless sensor networks for intelligent IoT,”
Sensors, vol. 16, no. 5, pp. 722-733, 2016.

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

[2]

3]

[4]

[5]

[6]

(71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Knowledge and Data Engineering

X.-L. Piao, Y.-L. Hu, Y.-F. Sun, B.-C. Yin, and J.-B. Gao,
“Correlated spatio-temporal data collection in wireless sensor
networks based on low rank matrix approximation and optimized
node sampling,” Sensors, vol. 14, no. 12, pp. 23137-23158, 2014.
J.J.Pan, S.J. Pan, Y. Jie, L. M. Ni, and Y. Qiang, “Tracking mobile
users in wireless networks via semi-supervised co-localization,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no.
3, pp. 587-600, 2012.

X. Luo, Z. You, M. Zhou, S. Li, H. Leung, Y. Xia, and Q. Zhu, “A
Highly Efficient Approach to Protein Interactome Mapping Based
on Collaborative Filtering Framework,” Scientific Reports, vol. 5,
pp- 7702, 2015.

M. Hofree, J. P. Shen, H. Carter, A. Gross, and T. Ideker,
“Network-based stratification of tumor mutations,” Nature
Methods, vol. 10, no. 11, pp. 1108-1115, 2013.

Z.H. You, Y. K. Lei, J. Gui, D. S. Huang, and X. B. Zhou, “Using
manifold embedding for assessing and predicting protein
interactions from high-throughput experimental data,”
Bioinformatics, vol. 26, no. 21, pp. 2744-2751, Nov. 2010.

Z. Ghahramani, “Probabilistic machine learning and artificial
intelligence,” Nature, vol. 521, no. 7553, pp. 452-459, 2015.

X. Cao, X. Wang, D. Jin, Y. Cao, and D. He, “Identifying
overlapping communities as well as hubs and outliers via
nonnegative matrix factorization,” Scientific Reports, vol. 3, pp.
2993, 2013

D. He, D. Jin, Z. Chen, and W. Zhang, “Identification of hybrid
node and link communities in complex networks,” Scientific
Reports, vol. 5, pp. 8638, 2015

Y. Li et al., “An efficient recommendation method for improving
business process modeling,” IEEE Trans. on Industrial Informatics,
vol. 10, no. 1, pp. 502-513, Feb. 2014.

G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and
possible extensions,” IEEE Trans. on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 734-749, Jun. 2005.

X. Luo, D.-X. Wang, M.-C. Zhou, H.-Q. Yuan, “Latent factor-based
recommenders relying on extended stochastic gradient descent
algorithms,” IEEE Trans. on Systems, Man, and Cybernetics: Systems,
DOI 10.1109/TSMC.2018.2884191.

X. Luo, H. Wu, H.-Q Yuan, M.-C Zhou, “Temporal pattern-aware
QoS prediction via biased non-negative latent factorization of
tensors,” IEEE Trans. on cybernetics, vol. 50, no. 5, pp. 1798-1809,
May. 2020.

L. Yang, X.-C. Cao, D. Jin, X. Wang, and D. Meng, “A unified
semi-supervised community detection framework using latent
space graph regularization,” IEEE Trans. on Cybernetics, vol. 45, no.
11, pp. 2585-2598, Nov. 2015.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J.
Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K. Tsafou, M.
Kuhn, P. Bork, L. J. Jensen, and C. v. Mering, “STRING v10:
protein-protein interaction networks, integrated over the tree of
life,” Nucleic Acids Research, vol. 43, no. 1, pp. 447-452, 2015.
R. Salakhutdinov and A. Mnih, “Probabilistic
factorization,” Advances in Neural Information Processing Systems,
vol. 20, 2008, pp. 1257-1264.

W. Chu, Z, Ghahramani, “Probabilistic models for incomplete

matrix

multi-dimensional arrays,” in Proc. of the 12th Int. Conf. on Artificial
Intelligence and Statistics, Clearwater Beach, FL, Apr. 2009, pp.
89-96.

11

(18]

(19]

[20]

(21]

[22]

(23]

(24]

[25]

26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Y. Koren and R. Bell, “Advances in collaborative-filtering,” in
Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, Eds. New York, NY, USA: Springer, 2011, pp.
145-186.

S. Chatzis, “Nonparametric Bayesian multitask collaborative
filtering,” in Proc. of the 22nd ACM Int. Conf. on Information and
Knowledge Management, San Francisco, CA, Oct. 2013, pp.
2149-2158.

N. Srebro, and R. Salakhutdinov, “Collaborative filtering in a
non-uniform world: learning with the weighted trace norm,”
Advances in Neural Information Processing System, pp. 2056-2064,
2010.

X. Luo, M.-C Zhou, Z.-D Wang, Y.-N Xia, and Q.-S Zhu, “An
effective QoS estimating scheme via alternating direction
method-based matrix factorization,” IEEE Trans.
Computing, vol. 12, no. 4, pp. 503-518, Nov. 2019.

X. Luo, M.-C Zhou, S. Li, M.-S Shang, “An inherently
non-negative latent factor model for high-dimensional and sparse

on Services

matrices from industrial applications”. IEEE Trans. on Industrial
Informatics, vol. 14, no. 5, pp. 2011-2022, 2018.

J. Wu, L. Chen, Y.-P. Feng, Z.-B. Zheng, M.-C. Zhou, and Z.-H. Wu,
“Predicting quality of service for selection by neighborhood-based
collaborative filtering,” IEEE Trans. on Systems, Man, and
Cybernetics: Systems, vol. 43, no. 2, pp. 428-439, 2013.

J.-]. Pan, S.-J. Pan, Y. Jie, L.-M. Ni, and Q. Yang, “Tracking mobile
users in wireless networks via semi-supervised colocalization,”
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no.
3, pp- 587-600, Mar. 2012.

Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” IEEE Computer, vol. 42, no.
8, pp- 30-37, Aug. 2009.

G. Takacs, 1. Pilaszy, Bottyan Németh, and D. Tikky, “Scalable
collaborative filtering approaches for large recommender
systems,” Journal of Machine Learning Research, vol. 10, pp. 623-656,
2009.

H. Ma, L King, and M. R. Lyu, “Learning to recommend with
social trust ensemble,” in Proc. of the 32nd Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, Boston, MA, USA,
Jul. 2009, pp. 203-210.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, pp. 2121-2159, 2011.

M. D. Zeiler, “/ADADELTA: An Adaptive Learning Rate Method,”
Computer Science, 2012.

D.-S. Li, C. Chen, Q. Lv, H.-S. Gu, T. Lu, L. Shang, N. Gu, and 5.-M
C, “AdaError: An Adaptive Learning Rate Method for Matrix
Approximation-based Collaborative Filtering,” in Proc. of the 27th
World Wide Web Conf., 2018, pp. 741-751.

S. Hsieh, T. Sun, C. Lin, and C. Liu, “Effective Learning Rate
Adjustment of Blind Source Separation Based on an Improved
Particle Swarm Optimizer,” IEEE Trans.
Computation, vol. 12, no. 2, pp. 242-251, 2008.

J. Kennedy, and R.-C Eberhart, “Particle swarm optimization,” in
Proc. of IEEE Int. Conf. Neural Networks, Perth, Australia, Nov. 1995,
vol. 4, pp. 1942-1948.

Shi Y, and Eberhart RC, “Empirical study of particle swarm

on Evolutionary

optimization,” in Proc. of the 1999 IEEE Congress on Evolutionary
Computation, Washington, DC, USA, USA, Jul. 1999, pp.
1945-1950.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Knowledge and Data Engineering

R. Cheng, and Y.-C. Jin, “A social learning particle swarm
optimization algorithm for scalable optimization”, Information
Sciences, vol.291, pp. 43-60, 2015.

T Yang, Z.-D Wang,]J.-A Fang, “Parameters identification of
unknown delayed genetic regulatory networks by a switching
particle swarm optimization algorithm,” Expert Systems with
Applications, vol. 38, no. 3, pp. 2523-35, 2011.

Valle Y, Venayagamoorthy G, Mohagheghi S, Hernandez], Harley
R, “Particle swarm optimization: basic concepts, variants and
applications in power systems,” IEEE Trans. on Evolutionary
Computation, vol. 12, no. 2, pp. 171-195, 2008.

Z.-H Zhan,] Zhang, Y Li, H Chung, “Adaptive particle swarm
optimization,” IEEE Trans. on Systems Man and Cybernetics part B-
Cybernetics, vol. 39, no. 6, pp. 1362-1381, 2009.

K. C. Kiwiel, “Convergence and efficiency of subgradient methods
for quasiconvex minimization,” Mathematical Programming, vol. 90,
no. 1, pp. 1-25, 2001.

C. K. Krzysztof, “Convergence of approximate and incremental
subgradient methods for convex optimization,” SIAM Journal on
Optimization, vol. 14, no. 3, pp. 807-840, 2004.

H. Robbins, and D. Siegmund, “A convergence theorem for
non-negative almost super martingales and some applications,”
Optimizing Methods in Statistics, pp. 233-257, 1971.

J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “Grouplens: applying collaborative filtering to usenet
news,” Communications of The ACM, vol. 40, no. 3, pp. 77-87, 1997.
P. Massa, and P. Avesani, “Trust-aware recommender systems,”
in Proc. of the 1st ACM Conf. on Recommender Systems, Minneapolis,
MN, USA, Oct. 2007, pp. 17-24.

J. Mohsen, and E. Martin, “A matrix factorization technique with

trust propagation for recommendation in social networks,” in Proc.

of the 4th ACM Conf. on Recommender Systems, Barcelona, Spain,
2010, pp. 135-142.

N.-Y. Zeng, Z.-D. Wang, H. Zhang, and F.-E. Alsaadi. “A Novel
Switching Delayed PSO Algorithm for Estimating Unknown
Parameters of Lateral Flow Immunoassay,” Cognitive Computation.
vol. 8, no. 2, pp. 143-152, 2016.

N.-Y. Zeng, Y.-S. Hung, Y.-R. Li, and M. Du. “A novel switching
local evolutionary PSO for quantitative analysis of lateral flow
immunoassay,” Expert Systems with Applications, vol. 41, no. 4, pp.
1708-1715, 2014.

X.-Y Jiang, S. Li. “Beetle
tuning (BAS-WPT)
arXiv:1711.02395v1, 2017.
X. Luo, M.-C. Zhou, S. Li, Z.-H. You, Y.N. Xia, and Q.-S. Zhu, “A
non-negative latent factor model for large-scale sparse matrices in

antennae search without parameter

for ~ multi-objective optimization,”

recommender systems via alternating direction method”. IEEE
Trans. on Neural Networks and Learning Systems, vol. 27, no. 3, pp.
524-537, 2016.

X. Luo, M.-C Zhou, Y.-N Xia, Q.-5 Zhu, “Generating highly
accurate predictions for missing QoS-data via aggregating
non-negative latent factor models”. IEEE Trans. on Neural Networks
and Learning Systems, vol. 27, no. 3, pp. 579-592, 2016.

S. Garcia-Galan, R. P. Prado, and J. E. M. Expdsito, “Swarm Fuzzy
Systems: Knowledge Acquisition in Fuzzy Systems and Its
Applications in Grid Computing,” IEEE Trans. on Knowledge and
Data Engineering, vol. 26, no. 7, pp. 1791-1804, 2014.

H. Wang, and C. Qiao, “A Nodes' Evolution Diversity Inspired
Method to Detect Anomalies in Dynamic Social Networks,” IEEE

12

(51]

(52]

(53]

[54]

(55]

[56]

(57]

(58]

[59

[60]

[61]

[62]

[63]

[64]

(65]

[66]

[67]

Trans. on Knowledge and Data DOI
10.1109/TKDE.2019.2912574, 2019.

D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980, 2014.

Y.-H. Shi, “Brain Storm Optimization Algorithm,” in Proc. of the
2nd Int. Conf. on Advances in Swarm Intelligence, Chongqing, China,
2011, pp. 303-309.

Z.-H. Zhan,]. Zhang, Y.-H. Shi, and H. Lin, “A modified brain

storm optimization,” in Proc. of the 2012 IEEE Congress on

Engineering,

Evolutionary Computation, Brisbane, Australia, 2012, pp. 1-8.
and H.-C. Watson,
“Self-organizing hierarchical particle swarm optimizer with

A. Ratnaweera, S.-K. Halgamuge,
time-varying acceleration coefficients,” IEEE Trans. on Evolutionary
Computation, vol. 8, no. 3, pp. 240-255, 2004.

W. Dong and M.-C. Zhou, “A Supervised Learning and Control
Method to Improve Particle Swarm Optimization Algorithms,”
IEEE Trans. on Systems, Man, and Cybernetics: Systems, vol. 47, no. 7,
pp. 1135-1148, 2017.

A.-K. Qin, P.-N. Suganthan, and §S. Baskar,
“Comprehensive learning particle swarm optimizer for global
IEEE Trans.
Evolutionary Computation, vol. 10, no. 3, pp. 281-295, 2006.
Z.-H. Zhan,]J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal Learning
Particle Swarm Optimization,” IEEE Trans. on Evolutionary
Computation, vol. 15, no. 6, pp. 832-847, 2011.

J. Behnamian and S.-M Ghomi, “Development of a PSO-SA hybrid
metaheuristic for a new comprehensive regression model to

J. Liang,

optimization of multimodal functions,” on

time-series forecasting,” Expert Systems With Applications, vol. 37,
no. 2, pp. 974-984, 2010.

Y.-J. Gong, J.-]. Li, Y.-C. Zhou, Y. Li, H.-S. Chung, Y.-H. Shi, and J.
Zhang, “Genetic Learning Particle Swarm Optimization,” IEEE
Trans. on Systems, Man, and Cybernetics, vol. 46, no. 10, pp.
2277-2290, 2016.

W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H.-S. Chung,
and Y.-H. Shi, “Particle Swarm Optimization With an Aging
Leader and Challengers.” IEEE Trans. on Evolutionary Computation,
vol. 17, no. 2, pp. 241-258, 2013.

Y.-H. Li, Z-H. Zhan, S.-]J. Lin,]J. Zhang, and X.-N. Luo,
“Competitive and cooperative particle swarm optimization with
information sharing mechanism for global optimization
problems,” Information Sciences, vol. 293, 370-382, 2015.

X.-W. Xia, G. Ling, and Z.-H. Zhan, “A multi-swarm particle
swarm optimization algorithm based on dynamical topology and
purposeful detecting,” Applied Soft Computing, vol. 67, no. 126-140,
2018.

Y. Yuan, Q. He, X. Luo, and M. Shang, “A Multilayered and
Randomized Latent Factor Model for High-Dimensional and
Sparse Matrices”, IEEE Big Data, DOI:
10.1109/TBDATA.2020.2988778

T.-T. He and K.-C. Chan, “Discovering Fuzzy Structural Patterns
for Graph Analytics,” IEEE Trans. on Fuzzy Systems, vol. 26, no. 5,
pp. 2785-2796, 2018.

T.-T. He, Y. Liu, T.-H. Ko, K.-C. Chan, and Y.-S. Ong, “Contextual
Correlation Preserving Multi-view Featured Graph Clustering,”
IEEE Trans. Cybernetics, DOI 10.1109/TCYB.2019.2926431.

C. Xu, D.-C. Tao, and C. Xu, “A Survey on Multi-view Learning,”

Trans. on

arXiv: Learning, 2013.
Y. Nesterov, “Introductory Lectures on Convex Optimization: A
Basic Course,” Kluwer Academic Publishers, 2014.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2020.3033324, IEEE

Transactions on Knowledge and Data Engineering

[68] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust
Stochastic Approximation Approach to Stochastic Programming,”
Siam Journal on Optimization, vol. 19, no. 4, pp. 1574-1609, 2013.

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge:
Cambridge University Press, 2009.

X. D. Zhang, “Matrix analysis and applications,” Cambridge
University Press, 2017.

G. Strang, “Introduction to Linear Algebra,” Wellesley-Cambridge
Press, 1993.

S.]. Leon, “Linear Algebra with Applications,” Prentice Hall, 1980.
D. C. Lay, “Linear Algebra and Its Applications,” Pearson, 1994.

E. Hazan, A. Agarwal, and S. Kale, “Logarithmic regret algorithms
for online convex optimization,” Machine Learning, vol. 69, no. 2,
pp- 169-192, 2007.

A. Rakhlin, O. Shamir, and K. Sridharan, “Making Gradient
Descent Optimal for Strongly Convex Stochastic Optimization,” in
Proc. of Int. Conf. on Machine Learning, pp. 1571-1578, 2012.
C.Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How
to escape saddle points efficiently,” In Proc. of the 34th Int. Conf. on
Machine Learning, vol. 70, pp. 1724-1732, 2017.

[69]
[70]
71]
72]

[73]
[74]

[75]

[76]

Xin Luo (M'14-SM'17) received the B.S. degree in

computer science from the University of Electronic
Science and Technology of China, Chengdu,

o N China, in 2005 and the Ph.D. degree in computer
() science from Beihang University, Beijing, China, in
i 2011. In 2016, he joined the Chongging Institute of

Green and Intelligent Technology, Chinese
Academy of Sciences, Chongging, China, as a
Professor of computer science and engineering.
He is currently also a Distinguished Professor of
computer science with the Dongguan University of Technology,
Dongguan, China. His current research interests include big data
analysis and intelligent control. He has published over 100 papers
(including over 50 IEEE TRANS. papers) in the above areas. Dr. Luo
was a recipient of the Hong Kong Scholar Program jointly by the Society
of Hong Kong Scholars and China Post-Doctoral Science Foundation in
2014, the Pioneer Hundred Talents Program of Chinese Academy of
Sciences in 2016, and the Advanced Support of the Pioneer Hundred
Talents Program of Chinese Academy of Sciences in 2018. He is
currently serving as an Associate Editor for the IEEE/CAA JOURNAL
OF AUTOMATICA SINICA, IEEE ACCESS, and Neurocomputing. He
has received the Outstanding Associate Editor award of IEEE ACCESS
in 2018.

Ye Yuan received the B.S. degree in electronic
information engineering and the M.S. degree in
signal processing from the University of Electronic
Science and technology, Chengdu, China, in 2010
and 2013, respectively. He is currently working
toward the Ph.D. degree in computer science from
Chongqging Institute of Green and Intelligent
Technology, Chinese Academy of Sciences,
Chongging, China. His research interests include
data mining and intelligent computing.

Sili Chen received the B.S. degree in network
engineering from China West Normal University,
Nanchong, China, in 2017. She is currently
pursuing her M.S. degree at China West Normal
University and is a visiting student at Chongqing
Institute of Green and Intelligent Technology. Her
research interests include big data analysis and
algorithm design for large scale data applications,
especially for recommender systems.

Nianyin Zeng (M' 17) received the B.Eng. degree in electrical
engineering and automation in 2008 and the Ph.D. degree in electrical
engineering in 2013, both from Fuzhou University. From October 2012

13

* to March 2013, he was a RA in the Department of

Electrical and Electronic Engineering, the

University of Hong Kong. From September 2017

to August 2018, he was an ISEF Fellow founded

‘é;: - by the Korea Foundation for Advance Studies and

'\I also a Visiting Professor at the Korea Advanced

1 Institute of Science and Technology. Currently, he

¥)\, ¥ isan Associate Professor with the Department of

ﬁ ﬂ: Instrumental & Electrical Engineering of Xiamen

. University. His current research interests include

intelligent data analysis, computational intelligent, time-series modeling

and applications. He is the author or coauthor of several technical

papers including 7 ESI Highly Cited Papers according to the most recent

Clarivate Analytics ESI report and also a very active reviewer for many

international journals and conferences. Dr. Zeng is currently serving as

an Associate Editor for Neurocomputing, Editorial Board members for

Computers in Biology and Medicine, Biomedical Engineering Online,

and also a Guest Editor for Frontiers in Neuroscience. He also serves as

a technical program committee member for ICBEB 2014, an Invited
Session Chair of ICCSE 2017.

Zidong Wang (SM'03-F'14) was born in Jiangsu,
China, in 1966. He received the B.Sc. degree in
mathematics in 1986 from SuZhou University,
Suzhou, China, and the M.Sc. degree in applied
mathematics in 1990 and the Ph.D. degree in
electrical engineering in 1994, both from Nanjing
University of Science and Technology, Nanjing,
China.

He is currently a Professor of Dynamical Systems
and Computing in the Department of Computer
Science, Brunel University London, U.K. From 1990 to 2002, he held
teaching and research appointments in universities in China, Germany
and the UK. Prof. Wang's research interests include dynamical systems,
signal processing, bioinformatics, control theory and applications. He
has published more than 500 papers in refereed international journals.
He is a holder of the Alexander von Humboldt Research Fellowship of
Germany, the JSPS Research Fellowship of Japan, Wiliam Mong
Visiting Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chief for
Neurocomputing, the Deputy Editor-in-Chief for International Journal of
Systems Science, and an Associate Editor for 12 international journals,
including IEEE Transactions on Automatic Control, IEEE Transactions
on Control Systems Technology, |IEEE Transactions on Neural
Networks, |IEEE Transactions on Signal Processing, and IEEE
Transactions on Systems, Man, and Cybernetics-Part C. He is a Fellow
of the IEEE, a Fellow of the Royal Statistical Society and a member of
program committee for many international conferences.

1041-4347 () 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

